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Abstract— Chemical graph theory is the combination of chemistry and graph theory, it is used for mathematical representation of mollecules 

for the sake of structural and physical properties of moleculer graph. Topological index is a numeric number which is calculated from a 

chemical network. Topological indices are used to associate structural properties such as topology and graph invariants of chemical graphs. 

In this paper we study the chemical graphs of (2D) silicon carbon 𝑆𝑖𝐶3 − 𝐼, 𝑆𝑖𝐶3 − 𝐼𝐼, 𝑆𝑖𝐶4 − 𝐼 and 𝑆𝑖𝐶4 − 𝐼𝐼. Moreover, we compute adriatic 

indices and their related polynomials, namely inverse sum indeg index and symmetric division degree index of 𝑆𝑖𝐶3 − 𝐼, 𝑆𝑖𝐶3 − 𝐼𝐼, 𝑆𝑖𝐶4 − 𝐼 

and 𝑆𝑖𝐶4 − 𝐼𝐼.  

Index Terms— Topological indices, silicon carbon 𝑆𝑖𝐶3 − 𝐼, 𝑆𝑖𝐶3 − 𝐼𝐼, 𝑆𝑖𝐶4 − 𝐼 and 𝑆𝑖𝐶4 − 𝐼𝐼, ISI index, SDD index 

——————————      —————————— 

1 INTRODUCTION                                                         

HEMICAL graph is the representation of a convenient 
model for any real or abstracted chemical system or a 
structure of a chemical system which is used to identify the 

interactions among atoms and bonds or groups of atoms and 
molecules. The pictorial representation of chemical graphs is 
used to study structural properties of a chemical graph, where 
its vertices being atoms and edges corresponds to covalent 
bonds. The study of chemical structures and the usage of graph 
theory is more than someone’s expectations. Chemical graph 
theory is a topological branch of mathematical chemistry which 
applies graph theory to chemical modeling of chemical struc-
tures. It is used for mathematical representation of molecules 
for the sake of physical properties of molecular graphs. Danial 
and Rouvary [1] described introduction and fundamentals of 
chemical graph theory.  
Topological index of a graph is a numerical value which can be 
associated to a graph. Topological indices can be calculated 
from molecular graphs in which vertices and edges are repre-
sented by atoms and bonds respectively. Our research is based 
on mathematical chemistry which deals with mathematical rep-
resentation of graphs and studies structural properties of chem-
ical graphs and it comprises an extensive research. Molecular 
graphs are the basic models of chemical graph theory. In this 
sense, a topological index is a type of molecular descriptor 
which is calculated for a molecular graph of chemical phenom-
ena. In 2004, after the productive separation of graphene sheets, 
the 2-dimensional structure of honeycomb urged researchers 
due to its remarkable properties like electronic, mechanical and 
optical. In [2], Pengfi Li et al. explored 2-dimensional silicon 
carbon monolayers compounds, with compositions of different 
ratios. Silicon is also a group-IV element and it has also 2-di-
mensional allotrope with the structure of honey comb, namely 
silicene. The silicene sheet show a weakely buckled local geom-
etry, it’s not like graphene sheet which is flat. The 2-dimen-
sional silicon carbon monolayers can be seen as the composition 
of tunable materials between the pure 2-dimensional silicon 
monolayer.  
Some of the most important degree based topological indices 
are bond additive, i.e. they are calculated as the sum of bond 

partion contributions, e.g. Randi𝑐 type indices and Balaban 
type indices. D. Vukicicevic and M. Gasperov [3] analyzed the 
computation methods of bond partition contributions of these 
bond additive descriptors. They extracted the general 
conccepts, based on those concepts, they introducesd a large 
class of molecular descriptors. This class of descriptors is 
named as adriatic indices. A special subclass of these de-
scriptors consists of 148 discrete adriatic indices. They are ana-
lyzed through testing sets provided by the IYMAC (Interna-
tional Academy of Mathematical Chemistry), they have good 
predictive properties in many cases. It is possible that they 
could improve various QSAR and QSPR properties [4] [5]. 
A graph 𝐺 is an ordered pair 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) of two sets, 
where  𝑉(𝐺) is a nonempty set of discrete points or atoms called 
vertices and 𝐸(𝐺) is a set of arcs or bonds connecting two verti-
ces called edges. The number of vertices in 𝑉(𝐺) is called order 
and number of edges in 𝐸(𝐺) is called size of the graph 𝐺.   
The number of edges incident with a vertex 𝑖 in a graph 𝐺 is 
called the degree of that vertex 𝑖 in 𝐺, is denoted as 𝑑𝑖 . In this 
paper we compute exact formulas for inverse sum indeg poly-
nomial, symmetric division degree polynomial, inverse sum 
indeg index and symmetric division degree index. Inverse sum 
indeg (ISI) index is a discrete adriatic index, which is the best 
total surface area predicter for octane isomers. The ISI index 
was introduced by D. Vukicevic and M. Gasperov [3] as: 

𝐼𝑆𝐼(𝐺) = ∑
𝑑𝑖𝑑𝑗

𝑑𝑖 + 𝑑𝑗
𝑖𝑗∈𝐸(𝐺)

 

And the ISI polynomial is defined as:  

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸(𝐺)

 

Where 𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
.  

The symmetric division degree (SDD) index is also an adriatic 

index. (See [6], [7] and [8]). The SDD index is defined as: 

𝑆𝐷𝐷(𝐺) = ∑
𝑑𝑖

2 +𝑑𝑗
2

𝑑𝑖𝑑𝑗
𝑖𝑗∈𝐸(𝐺)

 

And SDD polynomial is defined as  

C 
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𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸(𝐺)

 

where 𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
. 

We consider (2D) structures of 𝑆𝑖 − 𝐶 compounds with four dif-

ferent types namely 𝑆𝑖𝐶3 − 𝐼, 𝑆𝑖𝐶3 − 𝐼𝐼, 𝑆𝑖𝐶4 − 𝐼 and 𝑆𝑖𝐶4 − 𝐼𝐼.  

2 SILICON CARBIDE 𝑺𝒊𝑪𝟑 − 𝑰[𝒂, 𝒃] 2D STRUCTURE 

In this section ISI index, ISI polynomial, SDD index and SDD 
polynomials are computed for 𝑆𝑖𝐶3 − 𝐼.  
The 2D structure of silicon carbide graph 𝑆𝑖𝐶3 − 𝐼 is shown in 
Figure 2.1 To describe its molecular graph we have used the 
setting in this way:  we represented 𝑎 as the number of con-
nected cells in a row (or chain) and by 𝑏 we defined the number 
of connected rows each with 𝑎 number of cells. We denoted this 
molecular structure by 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏], whre 𝑎 and 𝑏 are natural 
numbers i.e. 𝑎, 𝑏 ≥ 1.  Thus the order of this graph is 8𝑎𝑏 where 
its size is 12𝑎𝑏 − 2𝑎 − 3𝑏 for 𝑎, 𝑏 ≥ 1.   

 
(a)                                               (b) 

 
Figure 2.1: The 2-dimensional structure of 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏], (a) One 
unit cell of 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏], (b) 𝑆𝑖𝐶3 − 𝐼[4,3]. Silicon atoms 𝑆𝑖 are 
colored blue and carbon atoms 𝐶 are colored red. 
 

 
                                                 (a) 

                                               (b)  
Figure 2.2: The 2D structure of 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏], (a) 𝑆𝑖𝐶3 − 𝐼[5,1], 
One row with 𝑎 = 5, 𝑏 = 1, red lines (edges\bonds) show how 
two cells are connected in a row (chain). (b) 𝑆𝑖𝐶3 − 𝐼[5,2] i.e. 𝑎 =
5, b=2, two rows are being connected by green lines 
(edges\bonds).  
 

In the graph of silicon carbide 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, there 
are three types of vertex sets based on the degree of vertices (or 
atoms) the vertex sets and their cardinalities are:  

𝑉1 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1}, |𝑉1| = 3  
𝑉2 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2}, |𝑉2| =  4𝑎 + 6𝑏 − 6 

𝑉3 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 3}, |𝑉3| = 8𝑎𝑏 − 4𝑎 − 6𝑏 + 3 
               Similarly with respect to an edge 𝑒 = 𝑖𝑗 of type (𝑑𝑖 , 𝑑𝑗), 
 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏]) is partioned into five sets, their set 
descriptions and cardinalities are given as:  

𝐸1,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1, 𝑑𝑗 = 2}, |𝐸1,2| = 2 
𝐸1,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1, 𝑑𝑗 = 3}, |𝐸1,3| = 1 

         𝐸2,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 2},  

         |𝐸2,2| = {
3𝑏 − 1             for 𝑎 = 1, 𝑏 ≥ 1
2𝑎 + 2𝑏 − 3    for 𝑎 > 1, 𝑏 ≥ 1

  

           𝐸2,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 3},  

         |𝐸2,3| = {
6𝑏 − 4             for 𝑎 = 1, 𝑏 ≥ 1
4𝑎 + 8𝑏 − 8    for 𝑎 > 1, 𝑏 ≥ 1

  

         𝐸3,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 3, 𝑑𝑗 = 3},  

       |𝐸3,3| = {
12ab − 2a − 12b + 2      for 𝑎 = 1, 𝑏 ≥ 1
12𝑎𝑏 − 8𝑎 − 13𝑏 + 8     for 𝑎 > 1, 𝑏 ≥ 1

  

 
Table 1. Shows this edge partition of 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
 
                         𝐸𝑑𝑖,𝑑𝑗               Frequency 

 
                    𝐸1,2                       2 
                    𝐸1,3                       1 
 

                           𝐸2,2            {
3𝑏 − 1           for 𝑎 = 1, 𝑏 ≥ 1
2𝑎 + 2𝑏 − 3  for 𝑎 > 1, 𝑏 ≥ 1

 

                   

                           𝐸2,3           {
6𝑏 − 4             for 𝑎 = 1, 𝑏 ≥ 1
4𝑎 + 8𝑏 − 8    for 𝑎 > 1, 𝑏 ≥ 1

  

                 

                          𝐸3,3         {
12𝑎𝑏 − 2𝑎 − 12𝑏 + 2      for 𝑎 = 1, 𝑏 ≥ 1
12𝑎𝑏 − 8𝑎 − 13𝑏 + 8     for 𝑎 > 1, 𝑏 ≥ 1

 

 
Our first theorem is about computation ISI polynomial of 
silicon carbide graph 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
Theorem 2.1: ISI polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as: 

1. For 𝑎 = 1, 𝑏 ≥ 1 

       𝐼𝑆𝐼(𝐺, 𝑥) = 3𝑏 − 1 + 2𝑥
1

2 + 𝑥
1

3 + (6𝑏 − 4)𝑥−
1

6 + (12𝑎𝑏 −

                                     2𝑎 − 12𝑏 + 2)𝑥−
1

3. 
2. For 𝑎 > 1, 𝑏 ≥ 1  

              𝐼𝑆𝐼(𝐺, 𝑥) = 2𝑎 + 2𝑏 − 3 + 2𝑥
1

2 + 𝑥
1

3 + (4𝑎 + 8𝑏 − 14)𝑥−
1

6 

                             +(12𝑎𝑏 − 8𝑎 − 13𝑏 + 8)𝑥−
1

3.  

Proof: For given graph, by using edge partition from Table 1,  
1. For 𝑎 = 1, 𝑏 ≥ 1 

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸(𝐺)     

= ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,2
+  ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,2
+

∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸3,3
   

 = (2)𝑥
1+2

1×2
−1

+(1)𝑥
1+3

1×3
−1

+(3𝑏 − 1)𝑥
2+2

2×2
−1 + (6𝑏 − 4)𝑥

2+3

2×3
−1 +

 (12𝑎𝑏 − 2𝑎 − 12𝑏 + 2)𝑥
3+3

3×3
−1
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  = 3𝑏 − 1 + 2𝑥
1

2 + 𝑥
1

3 + (6𝑏 − 4)𝑥−
1

6 + (12𝑎𝑏 − 2𝑎 −  12𝑏 + 2)𝑥−
1

3.  

2. For 𝑎 > 1, 𝑏 ≥1 

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸(𝐺)   

= ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,2
+  ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,2
+

∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸3,3
  

= (2)𝑥
1+2

1×2
−1

+(1)𝑥
1+3

1×3
−1

+(2𝑎 + 2𝑏 − 3)𝑥
2+2

2×2
−1 +  (4𝑎 + 8𝑏 −

8)𝑥
2+3

2×3
−1 + (12𝑎𝑏 − 8𝑎 − 13𝑏 + 8)𝑥

3+3

3×3
−1

   

= 2𝑎 + 2𝑏 − 3 + 2𝑥
1

2 + 𝑥
1

3 + (4𝑎 + 8𝑏 − 14)𝑥−
1

6 + (12𝑎𝑏 − 8𝑎 −

13𝑏 + 8)𝑥−
1

3.  

As a particular result, we computed ISI index of 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 2.1 ISI index of 𝐺 ≅ 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

1. 𝐼𝑆𝐼(𝐺) = 18𝑎𝑏 − 3𝑎 −
39

5
𝑏 −

43

60
      for 𝑎 = 1, 𝑏 ≥ 1 

2. 𝐼𝑆𝐼(𝐺) = 18𝑎𝑏 −
26

5
𝑎 −

79

10
𝑏 +

89

60
     for 𝑎 > 1, 𝑏 ≥ 1 

Proof:  

1. 𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
= ∫ [3𝑏 − 1 + 2𝑥

1

2 + 𝑥
1

3 + (6𝑏 −
1

0

4)𝑥−
1

6 + (12𝑎𝑏 − 2𝑎 − 12𝑏 + 2)𝑥−
1

3] 𝑑𝑥 

                = |(3b − 1)𝑥 +
4

3
𝑥

3

2 +
3

4
𝑥

4

3 +
6(6𝑏−4)

5
𝑥

5

6 +

                 
 3(12𝑎𝑏−2𝑎−12𝑏+2)

2
𝑥

2

3 |
0

1

= 18𝑎𝑏 − 3𝑎 −
39

5
𝑏 −

43

60
  

2. 𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
 = ∫ [= 2𝑎 + 2𝑏 − 3 + 2𝑥

1

2 + 𝑥
1

3 +
1

0

 (4𝑎 + 8𝑏 − 14)𝑥−
1

6 + (12𝑎𝑏 − 8𝑎 − 13𝑏 + 8)𝑥−
1

3 ]𝑑𝑥 

                = |(2𝑎 + 2𝑏 − 3)𝑥 +
4

3
𝑥

3

2 +
3

4
𝑥

4

3 +
6(4𝑎+8𝑏−14)

5
𝑥

5

6 + 3(12𝑎𝑏 −

                    8𝑎 − 13𝑏 + 8)𝑥
2

3 |
0

1

                             

            = 18𝑎𝑏 −
26

5
𝑎 −

79

10
𝑏 +

89

60
    

Next we compute SDD polynomial of silicon carbide graph of 
𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1.  
Theorem:2.2 SDD polynomial  of silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as: 

1. For 𝑎 = 1, 𝑏 ≥ 1 

       𝑆𝐷𝐷(𝐺, 𝑥) = 2𝑥−
3

5 + 𝑥−
7

10 + (6𝑏 − 4)𝑥−
7

13 + (12𝑎𝑏 −  2𝑎 −

                                   9𝑏 + 1)𝑥−
1

2. 
2. For 𝑎 > 1, 𝑏 ≥ 1  

            𝑆𝐷𝐷(𝐺, 𝑥) = 2𝑥−
3

5 + 𝑥−
7

10 + (4𝑎 + 8𝑏 − 8)𝑥−
7

13 + (12𝑎𝑏 −

                                     6𝑎 − 11𝑏 + 5)𝑥−
1

2.  
Proof: For given graph, by using edge partition from Table 1, 

1. For 𝑎 = 1, 𝑏 ≥ 1 

𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸(𝐺) =∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸1,2
+

∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸1,3
+∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸2,3
+

∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸3,3
= (2)𝑥

1×2

12+22−1
+(1)𝑥

1×3

12×32−1
+(3𝑏 − 1)𝑥

2×2

22+22−1
 

+(6𝑏 − 4)𝑥
2×3

22+32−1
+ (12𝑎𝑏 − 2𝑎 − 12𝑏 + 2)𝑥

3×3

32+32−1
 

 = 2𝑥−
3

5 + 𝑥−
7

10 + (6𝑏 − 4)𝑥−
7

13 + (12𝑎𝑏 −  2𝑎 −  9𝑏 + 1)𝑥−
1

2  

2. For 𝑎 > 1, 𝑏 ≥ 1  

𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸(𝐺)   

          = ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸1,2
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸1,3
+∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸2,2
+

              ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸3,3
 

          = (2)𝑥
1×2

12+22−1
+(1)𝑥

1×3

12×32−1
+(2𝑎 + 2𝑏 − 3)𝑥

2×2

22+22−1
 

 +(4𝑎 + 8𝑏 − 8)𝑥
2×3

22+32−1
+ (12𝑎𝑏 − 8𝑎 − 13𝑏 + 7)𝑥

3×3

32+32−1
 

  = 2𝑥−
3

5 + 𝑥−
7

10 + (4𝑎 + 8𝑏 − 8)𝑥−
7

13 + (12𝑎𝑏 −  6𝑎 − 11𝑏 + 5)𝑥−
1

2  

As a particular result, we computed SDD index of 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 2.2 SDD index of 𝐺 ≅ 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

1. 𝑆𝐷𝐷(𝐺) = 24𝑎𝑏 − 4𝑎 − 5𝑏 +
11

3
      for 𝑎 = 1, 𝑏 ≥ 1 

2. 𝑆𝐷𝐷(𝐺) = 24𝑎𝑏 −
10

3
𝑎 −

14

3
𝑏 + 1     for 𝑎 > 1, 𝑏 ≥ 1 

Proof:   

1. 𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
=∫ [2𝑥−

3

5 + 𝑥−
7

10 + (6𝑏 −
1

0

                 4)𝑥−
7

13 + (12𝑎𝑏 −  2𝑎 −  9𝑏 + 1)𝑥−
1

2]𝑑𝑥 

        = |5𝑥
2

5 +
10

3
𝑥

3

10 +  
13(6𝑏−4)

6
𝑥

6

13 + 2(12𝑎𝑏 − 2𝑎 −

                  9𝑏 + 1) √𝑥 |
0

1
= 24𝑎𝑏 − 4𝑎 − 5𝑏 +

11

3
 

2. 𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
 = ∫ [2𝑥−

3

5 + 𝑥−
7

10 + (4𝑎 +
1

0

                  8𝑏 − 8)𝑥−
7

13 + (12𝑎𝑏 − 6𝑎 − 11𝑏 + 5)𝑥−
1

2]𝑑𝑥 

                                  = |5𝑥
2

5 +
10

3
𝑥

3

10 +  
13(4𝑎+8𝑏−8)

6
𝑥

6

13 + 2(12𝑎𝑏 −

                                  6𝑎 − 11𝑏 + 5) √𝑥 |
0

1
                              

                                  = 24𝑎𝑏 −
10

3
𝑎 −

14

3
𝑏 + 1      

3 SILICON CARBIDE 𝑺𝒊𝑪𝟑 − 𝑰𝑰[𝒂, 𝒃] 2D STRUCTURE 

In this section ISI index, ISI polynomial, SDD index and SDD 
polynomials are computed for 𝑆𝑖𝐶3 − 𝐼𝐼.  
The 2D structure of silicon carbide graph 𝑆𝑖𝐶3 − 𝐼𝐼 is shown in 
Figure 3.1.  

 
  (a)                                              (b) 

 
Figure 3.1: The 2-dimensional structure of 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏],  
(a) One unit cell of 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏], (b) 𝑆𝑖𝐶3 − 𝐼𝐼[4,3]. Silicon 
atoms 𝑆𝑖 are colored blue and carbon atoms 𝐶 are colored red. 
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For the description of its chemical graph we have used the set-
ting in this way:  we represented 𝑎 as the number of connected 
cells in a row (or chain) and by 𝑏 we defined the number of con-
nected rows each with 𝑎 number of cells. We denoted this mo-
lecular structure by 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏], whre 𝑎 and 𝑏 are natural 
numbers i.e. 𝑎, 𝑏 ≥ 1.  Thus the order of this graph is 8𝑎𝑏 where 
its size is 12𝑎𝑏 − 2𝑎 − 2𝑏 for 𝑎, 𝑏 ≥ 1.   
 

 
 
                                                  
 
 

                                            (a) 
 
 
 
                                                
 
 
 
 
 

              (b)  
Figure 3.2: The 2D structure of 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏], (a) 𝑆𝑖𝐶3 − 𝐼𝐼[5,1], 
One row with 𝑎 = 5 and 𝑏 = 1, red lines (edges) show how two 
cells are connected in a row (chain). (b) 𝑆𝑖𝐶3 − 𝐼𝐼[5,2] i.e. 𝑎 = 5, 
b=2, two rows are being connected by green lines (edges).  
 
    In the graph of silicon carbide 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, 
there are three types of vertex sets based on the degree of 
vertices the vertex sets and their cardinalities are:  

𝑉1 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 1}, |𝑉1| = 2  
𝑉2 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 2}, |𝑉2| =  4𝑎 + 4𝑏 − 4 

𝑉3 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 3}, |𝑉3| = 8𝑎𝑏 − 4𝑎 − 4𝑏 + 2 
    Similarly with respect to an edge 𝑒 = 𝑖𝑗 of type (𝑑𝑖 , 𝑑𝑗), 
 𝐸(𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏]) is partioned into four sets, their set 
descriptions and cardinalities are given as:  

𝐸1,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1, 𝑑𝑗 = 3}, |𝐸1,3| = 1 
 𝐸2,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 2}, |𝐸2,2| = 2𝑎 + 1  
 𝐸2,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 3},  
|𝐸2,3| = 4𝑎 + 8𝑏 − 10  
         𝐸3,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 3, 𝑑𝑗 = 3},  
       |𝐸3,3| = 12𝑎𝑏 − 8𝑎 − 10𝑏 + 7  

 
Table 2. Shows this edge partition of 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
 
                         𝐸𝑑𝑖,𝑑𝑗               Frequency 

 
                    𝐸1,3                       2 
                      
                    𝐸2,2                       2𝑎 + 1 
 

                          𝐸2,3                   4𝑎 + 8𝑏 − 10 

                   

                           𝐸3,3          12𝑎𝑏 − 8𝑎 − 10𝑏 + 7   

                   

 

In the following theorem we calculate ISI polynomial of silicon 
carbide graph 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1.  
Theorem 3.1: ISI polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as: 

𝐼𝑆𝐼(𝐺, 𝑥) = 3𝑎 + 1 + 2𝑥
1

3 + (4a + 8𝑏 − 10)𝑥−
1

6 + (12𝑎𝑏 − 8𝑎 −

                    10𝑏 + 7)𝑥−
1

3.  

Proof: For given graph, by using edge partition from Table 2, 

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸(𝐺) =  ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,2
+

 ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸3,3
                

= (2)𝑥
1+3

1×3
−1

+(2𝑎 + 1)𝑥
2+2

2×2
−1 + ( 4𝑎 + 8𝑏 − 10)𝑥

2+3

2×3
−1 + ( 12𝑎𝑏 −

8𝑎 − 10𝑏 + 7)𝑥
3+3

3×3
−1 = 3𝑎 + 1 + 2𝑥

1

3 + (4a + 8𝑏 − 10)𝑥−
1

6 +

(12𝑎𝑏 − 8𝑎 − 10𝑏 + 7)𝑥−
1

3.  

 
As a particular result, we computed ISI index of 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 3.1 ISI index of 𝐺 ≅ 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

𝐼𝑆𝐼(𝐺) = 18𝑎𝑏 −
26

5
𝑎 −

27

5
𝑏 + 1     

Proof:  

𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
= ∫ [3𝑏 − 1 + 2𝑥

1

2 + 𝑥
1

3 + (6𝑏 −  4)𝑥−
1

6 +
1

0

             (12𝑎𝑏 − 2𝑎 − 12𝑏 + 2)𝑥−
1

3] 𝑑𝑥  

               = |(2𝑎 + b)𝑥 +
3

2
𝑥

4

3 +
6(4𝑎+8𝑏−10)

5
𝑥

5

6 +
 3(12𝑎𝑏−8𝑎−10𝑏+7)

2
𝑥

2

3 |
0

1

  

            = 18𝑎𝑏 −
26

5
𝑎 −

27

5
𝑏 + 1  

Next theorem is about computation of SDD polynomial for the 
silicon carbide graph 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1. 
Theorem:3.2 SDD polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as:        

𝑆𝐷𝐷(𝐺, 𝑥) = 2𝑥−
7

10 + (4𝑎 + 8𝑏 − 10)𝑥−
7

13 + (12𝑎𝑏 −  6𝑎 −

                       10𝑏 + 8)𝑥−
1

2.  
Proof: For given graph, by using edge partition from Table 2, 

𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

= ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸1,3
+𝑖𝑗∈𝐸(𝐺)

∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸3,3
  

= (2)𝑥
1×3

12×32−1
+( 2𝑎 + 1)𝑥

2×2

22+22−1
+ (4𝑎 + 8𝑚 − 10)𝑥

2×3

22+32−1
+

(12𝑎𝑏 − 8𝑎 − 10𝑏 + 7)𝑥
3×3

32+32−1
 

 = 2𝑥−
7

10 + (4𝑎 + 8𝑏 − 10)𝑥−
7

13 + (12𝑎𝑏 −  6𝑎 −    10𝑏 +  8)𝑥−
1

2  
As a particular result, we computed SDD index of 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 3.2 SDD index of 𝐺 ≅ 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

𝑆𝐷𝐷(𝐺) = 24𝑎𝑏 −
10

3
𝑎 −

8

3
𝑏 + 1      

Proof:   

𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
=∫ [2𝑥−

7

10 + (4𝑎 + 8𝑏 − 10)𝑥−
7

13 +
1

0

                    (12𝑎𝑏 −  6𝑎 −    10𝑏 +  8)𝑥−
1

2 ]𝑑𝑥 

            = |
20

3
𝑥

3

10 +  
13(4𝑎+8𝑏−10)

6
𝑥

6

13 + 2(12𝑎𝑏 −  6𝑎 − 10𝑏 +

           8) √𝑥 |
0

1
 = 24𝑎𝑏 −

10

3
𝑎 −

8

3
𝑏 + 1 
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4 SILICON CARBIDE 𝑺𝒊𝑪𝟒 − 𝑰[𝒂, 𝒃] 2D STRUCTURE 

In this section ISI index, ISI polynomial, SDD index and SDD 
polynomials are computed for 𝑆𝑖𝐶4 − 𝐼.  
The 2D structure of silicon carbide graph 𝑆𝑖𝐶4 − 𝐼is shown in 
Figure 4.1, To describe its chemical graph we have used the set-
ting in this way:  we represented 𝑎 as the number of connected 
cells in a row (or chain) and by 𝑏 we defined the number of con-
nected rows each with 𝑎 number of cells. We denoted this mo-
lecular structure by 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏], whre 𝑎 and 𝑏 are natural 
numbers i.e. 𝑎, 𝑏 ≥ 1.  Thus the order of this graph is 10𝑎𝑏 
where its size is 15𝑎𝑏 − 4𝑎 − 2𝑏 + 1 for 𝑎, 𝑏 ≥ 1.   

 

 
  (a)                                              (b) 

 
Figure 4.1: The 2-dimensional structure of 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏],  
(a) One unit cell of 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏], (b) 𝑆𝑖𝐶4 − 𝐼[4,3]. Silicon atoms 
𝑆𝑖 are colored blue and carbon atoms 𝐶 are colored red.                                                  
 

 
                                             
 

 
 

          (a) 
 

 
              (b)  
Figure 4.2: The 2D structure of 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏], (a) 𝑆𝑖𝐶4 − 𝐼[5,1], 
One row with 𝑎 = 5 and 𝑏 = 1, red lines (edges) show how two 
cells are connected in a row (chain). (b) 𝑆𝑖𝐶4 − 𝐼[5,2] i.e. 𝑎 = 5, 
b=2, two rows are being connected by green lines (edges).  
 
 In graph of silicon carbide 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, there are 
three types of vertex sets based on the degree of vertices (or 
atoms) the vertex sets and their cardinalities are:  

𝑉1 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1}, |𝑉1| = 3𝑎  
𝑉2 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2}, |𝑉2| =  2𝑎 + 4𝑏 − 2 

𝑉3 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 3}, |𝑉3| = 10𝑎𝑏 − 5𝑎 − 4𝑏 + 2 
    Similarly with respect to an edge 𝑒 = 𝑖𝑗 of type (𝑑𝑖 , 𝑑𝑗), 
 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏]) is partioned into five sets, their set 

descriptions and cardinalities are given as:  
𝐸1,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1, 𝑑𝑗 = 2}, |𝐸1,2| = 2 

𝐸1,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 1, 𝑑𝑗 = 3}, |𝐸1,3| = 3𝑎 − 2 
 𝐸2,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 2}, 
  |𝐸2,2| = 𝑎 + 2𝑏 − 2  
 𝐸2,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 3},  
|𝐸2,3| = 2𝑎 + 4𝑏 − 2  
         𝐸3,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏])|𝑑𝑖 = 3, 𝑑𝑗 = 3},  
       |𝐸3,3| = 15𝑎𝑏 − 10𝑎 − 8𝑏 + 5  

Table 3. Shows this edge partition of 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
 
                         𝐸𝑑𝑖,𝑑𝑗               Frequency 

 
                    𝐸1,2                       2 
 

                         𝐸1,3                   3𝑎 − 2 
                      
                    𝐸2,2                𝑎 + 2𝑏 − 2 
 

                          𝐸2,3                  2𝑎 + 4𝑏 − 2  

                   

                          𝐸3,3          15𝑎𝑏 − 10𝑎 − 8𝑏 + 5  

                   

Next we compute exact formula of ISI polynomial for the silicon 
carbide graph 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1. 
Theorem 4.1: ISI polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as: 

𝐼𝑆𝐼(𝐺, 𝑥) = 𝑎 + 2𝑏 − 2 + 2𝑥
1

2 + (3𝑎 − 2)𝑥
1

3 + (2a + 4𝑏 − 2)𝑥−
1

6 +

                  (15𝑎𝑏 − 10𝑎 −  8𝑏 + 5)𝑥−
1

3.  
Proof: For given graph, by using edge partition from Table 3, 

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸(𝐺)   

=  ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,2
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,2
+

 ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸3,3
  

= (2)𝑥
1+2

1×2
−1 + (3𝑎 − 2)𝑥

1+3

1×3
−1

+(𝑎 + 2𝑏 − 2)𝑥
2+2

2×2
−1 + ( 2𝑎 + 4𝑏 −

2)𝑥
2+3

2×3
−1 + ( 15𝑎𝑏 − 10𝑎 − 8𝑏 + 5)𝑥

3+3

3×3
−1

 

 = 𝑎 + 2𝑏 − 2 + 2𝑥
1

2 + (3𝑎 − 2)𝑥
1

3 + (2a + 4𝑏 − 2)𝑥−
1

6 +

(15𝑎𝑏 − 10𝑎 −  8𝑏 + 5)𝑥−
1

3.  

 
As a particular result, we computed ISI index of 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 4.1 ISI index of 𝐺 ≅ 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

𝐼𝑆𝐼(𝐺) =
45

2
𝑎𝑏 −

187

20
𝑎 −

26

5
𝑏 +

44

15
 

Proof:  

𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
= ∫ [𝑎 + 2𝑏 − 2 + 2𝑥

1

2 + (3𝑎 − 2)𝑥
1

3 +
1

0

              (2a + 4𝑏 − 2)𝑥−
1

6 + (15𝑎𝑏 − 10𝑎 −  8𝑏 + 5)𝑥−
1

3] 𝑑𝑥       

           = |(𝑎 + 2𝑏 − 2)𝑥 +
4

3
𝑥

3

2 +
3(3𝑎−2)

4
𝑥

4

3 +
6(2𝑎+4𝑏−2)

5
𝑥

5

6 +

           
 3(15𝑎𝑏−10𝑎−8𝑏+5)

2
𝑥

2

3 |
0

1

  =
45

2
𝑎𝑏 −

187

20
𝑎 −

26

5
𝑏 +

44

15
 . 
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In next theorem, we compute SDD polynomial of silicon 
carbide graph 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
Theorem:4.2 SDD polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as:        

𝑆𝐷𝐷(𝐺, 𝑥) = 2𝑥−
3

5 + (3𝑎 − 2)𝑥−
7

10 + (2𝑎 + 4𝑏 − 2)𝑥−
7

13 +

                      (15𝑎𝑏 −  9𝑎 − 6𝑏 + 3)𝑥−
1

2.  

Proof: For given graph, by using edge partition from Table 3, 

𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸(𝐺) = ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸1,2
+

∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸1,3
+∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸2,3
+

∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸3,3
 

= (2)𝑥
1×2

12×22−1
+ (3𝑎 − 2)𝑥

1×3

12×32−1
+( 𝑎 + 2𝑏 − 2)𝑥

2×2

22+22−1
+ ( 2𝑎 +

4𝑏 −  2 )𝑥
2×3

22+32−1
+ (15𝑎𝑏 − 10𝑎 − 8𝑏 + 5)𝑥

3×3

32+32−1
 

 = 2𝑥−
3

5 + (3𝑎 − 2)𝑥−
7

10 + (2𝑎 + 4𝑏 − 2)𝑥−
7

13 + (15𝑎𝑏 − 9𝑎 −

6𝑏 + 3)𝑥−
1

2  
 
As a particular result, we computed SDD index of 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 4.2 SDD index of 𝐺 ≅ 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

𝑆𝐷𝐷(𝐺) = 30𝑎𝑏 −
11

3
𝑎 −

10

3
𝑏      

Proof:   

𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
=∫ [2𝑥−

3

5 + (3𝑎 − 2)𝑥−
7

10 + (2𝑎 + 4𝑏 −
1

0

                 2)𝑥−
7

13 + (15𝑎𝑏 − 9𝑎 − 6𝑏 + 3)𝑥−
1

2 ]𝑑𝑥 

               = |5𝑥
2

5 +
10(3𝑎−2)

3
𝑥

3

10 +  
13(2𝑎+4𝑏−2)

6
𝑥

6

13 + 2(15𝑎𝑏 −  9𝑎 −

               6𝑏 +  3) √𝑥 |
0

1
  = 30𝑎𝑏 −

11

3
𝑎 −

10

3
𝑏  

5 SILICON CARBIDE 𝑺𝒊𝑪𝟒 − 𝑰𝑰[𝒂, 𝒃] 2D STRUCTURE 

In this section ISI index, ISI polynomial, SDD index and SDD 
polynomials are computed for 𝑆𝑖𝐶4 − 𝐼𝐼.  
The 2D structure of silicon carbide graph 𝑆𝑖𝐶4 − 𝐼𝐼is shown in 
Figure 5.1. To describe its chemical graph we have used the set-
ting in this way:  we represented 𝑎 as the number of connected 
cells in a row (or chain) and by 𝑏 we defined the number of con-
nected rows each with 𝑎 number of cells. We denoted this mo-
lecular structure by 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏], whre 𝑎 and 𝑏 are natural 
numbers i.e. 𝑎, 𝑏 ≥ 1. Thus the order of this graph is 10𝑎𝑏 where 
its size is 15𝑎𝑏 − 4𝑎 − 2𝑏 for 𝑎, 𝑏 ≥ 1.   

 
 
                                   (a) 
                                    

                               
 
 

                                          
(b) 
 

Figure 4.1: The 2-dimensional structure of 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏],  
(a) One unit cell of 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏], (b) 𝑆𝑖𝐶4 − 𝐼𝐼[3,3]. Silicon 
atoms 𝑆𝑖 are colored blue and carbon atoms 𝐶 are colored red. 
  

          (a) 
 

              (b)  
Figure 4.2: The 2D structure of 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏], (a) 𝑆𝑖𝐶4 − 𝐼𝐼[4,1], 
One row with 𝑎 = 4 and 𝑏 = 1, red lines (edges) show how two 
cells are connected in a row (chain). (b) 𝑆𝑖𝐶4 − 𝐼𝐼[4,2] i.e. 𝑎 = 3, 
b=2, two rows are being connected by green lines (edges).  
 
    In graph of silicon carbide 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, there 
are three types of vertex sets based on the degree of vertices the 
vertex sets and their cardinalities are:  

𝑉1 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 1}, |𝑉1| = 2  
𝑉2 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 2}, |𝑉2| =  8𝑎 + 4𝑏 − 4 

𝑉3 = {𝑖 ∈ 𝑉(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 3}, |𝑉3| = 10𝑎𝑏 − 8𝑎 − 4𝑏 + 2 
    Similarly with respect to an edge 𝑒 = 𝑖𝑗 of type (𝑑𝑖 , 𝑑𝑗), 
 𝐸(𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏]) is partioned into four sets, their set 
descriptions and cardinalities are given as:  

𝐸1,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 1, 𝑑𝑗 = 2}, |𝐸1,2| = 2 
        𝐸2,2 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 2},  

  |𝐸2,2| = {
5𝑎 + 2   for  𝑏 = 1, 𝑎 ≥ 1
2𝑎 + 2   for  𝑏 > 1, 𝑎 ≥ 1 

 

 𝐸2,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 2, 𝑑𝑗 = 3},  

|𝐸2,3| = {
6𝑎 − 6                for  𝑏 = 1, 𝑎 ≥ 1

12𝑎 + 8𝑏 − 14   for  𝑏 > 1, 𝑎 ≥ 1 
  

         𝐸3,3 = {𝑖𝑗 ∈ 𝐸(𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏])|𝑑𝑖 = 3, 𝑑𝑗 = 3},  

       |𝐸3,3| = {
15𝑎𝑏 − 15𝑎 − 2𝑏 + 2      for  𝑏 = 1, 𝑎 ≥ 1

15𝑎𝑏 − 18𝑎 − 10𝑏 + 10   for  𝑏 > 1, 𝑎 ≥ 1 
  

 
 
Table 5. Shows this edge partition of 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
 
             𝐸𝑑𝑖,𝑑𝑗               Frequency 

 
       𝐸1,2                       2 
 

             𝐸2,2         {
5𝑎 + 2   for  𝑏 = 1, 𝑎 ≥ 1
2𝑎 + 2   for  𝑏 > 1, 𝑎 ≥ 1 

 

                  

              𝐸2,3        {
6𝑎 − 6                for  𝑏 = 1, 𝑎 ≥ 1

12𝑎 + 8𝑏 − 14   for  𝑏 > 1, 𝑎 ≥ 1 
            

 

              𝐸3,3        {
15𝑎𝑏 − 15a − 2b + 2      for  𝑏 = 1, 𝑎 ≥ 1

15𝑎𝑏 − 18𝑎 − 10𝑏 + 10   for  𝑏 > 1, 𝑎 ≥ 1 
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Next we compute ISI polynomial for the silicon carbide graph 
𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
Theorem 5.1: ISI polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as: 

1. For 𝑏 = 1, 𝑎 ≥ 1 

    𝐼𝑆𝐼(𝐺, 𝑥) = 5𝑎 + 2 + 2𝑥
1

2 + (6𝑎 − 6)𝑥−
1

6 + (15𝑎𝑏 − 15𝑎 −

                                    2𝑏 + 2)𝑥−
1

3. 
2. For 𝑏 > 1, 𝑎 ≥ 1  

              𝐼𝑆𝐼(𝐺, 𝑥) = 2𝑎 + 2 + 2𝑥
1

2 + (12𝑎 + 8𝑏 − 14)𝑥−
1

6 

                             +(15𝑎𝑏 − 18𝑎 − 10𝑏 + 10)𝑥−
1

3.  

Proof: For given graph, by using edge partition from Table 4, 
1. For 𝑏 = 1, 𝑎 ≥ 1 

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸(𝐺) =  ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,2
+

+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸3,3
  

= (2)𝑥
1+2

1×2
−1

+(5𝑎 + 2)𝑥
2+2

2×2
−1 + (6𝑎 −  6)𝑥

2+3

2×3
−1 + (15𝑎𝑏 − 15𝑎 −

2𝑏 + 2)𝑥
3+3

3×3
−1

 

= 5𝑎 + 2 + 2𝑥
1

2 + (6𝑎 − 6)𝑥−
1

6 + (15𝑎𝑏 − 15𝑎 − 2𝑏 +      2)𝑥−
1

3  

2. For 𝑏 > 1, 𝑎 ≥ 1  

𝐼𝑆𝐼(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

=  ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸1,2
+𝑖𝑗∈𝐸(𝐺)

+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸2,3
+ ∑ 𝑥

𝑑𝑖+𝑑_𝑗

𝑑𝑖𝑑𝑗
−1

𝑖𝑗∈𝐸3,3
  

 = (2)𝑥
1+2

1×2
−1

+(2𝑎 + 2)𝑥
2+2

2×2
−1 + (12𝑎 + 8𝑏 − 14)𝑥

2+3

2×3
−1 +

(15𝑎𝑏 − 18𝑎 − 10𝑏 + 10)𝑥
3+3

3×3
−1 =  2𝑎 + 2 + 2𝑥

1

2 + (12𝑎 + 8𝑏 −

14)𝑥−
1

6 + (15𝑎𝑏 − 18𝑎 − 10𝑏 + 10)𝑥−
1

3  

 
As a particular result, we computed ISI index of 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 5.1 ISI index of 𝐺 ≅ 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

1. 𝐼𝑆𝐼(𝐺) =
45

2
𝑎𝑏 −

103

10
𝑎 − 3𝑏 −

13

15
      for 𝑏 = 1, 𝑏 ≥ 1 

2.  𝐼𝑆𝐼(𝐺) =
45

2
𝑎𝑏 −

53

5
𝑎 −

27

5
𝑏 +

23

15
     for 𝑏 > 1, 𝑏 ≥ 1 

Proof:  

1. 𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
= ∫ [5𝑎 + 2 + 2𝑥

1

2 + (6𝑎 −
1

0

             6)𝑥−
1

6 + (15𝑎𝑏 − 15𝑎 −  2𝑏 + 2)𝑥−
1

3] 𝑑𝑥 

                     = |(5𝑎 + 2)𝑥 +
4

3
𝑥

3

2 +
6(6𝑎−6)

5
𝑥

5

6 +
 3(15𝑎𝑏−15𝑎−2𝑏+2)

2
𝑥

2

3 |
0

1

                  

                       =
45

2
𝑎𝑏 −

103

10
𝑎 − 3𝑏 −

13

15
        

2. 𝐼𝑆𝐼(𝐺) = ∫ 𝐼𝑆𝐼(𝐺, 𝑥)𝑑𝑥
1

0
 = ∫ [2𝑎 + 2 + 2𝑥

1

2 + (12𝑎 + 8𝑏 −
1

0

                 14)𝑥−
1

6 + (15𝑎𝑏 − 18𝑎 − 10𝑏 + 10)𝑥−
1

3]𝑑𝑥 

                                = |(2𝑎 + 2)𝑥 +
4

3
𝑥

3

2 +
6(12𝑎+8𝑏−14)

5
𝑥

5

6 +

                                  
 3(15𝑎𝑏−18𝑎−10𝑏+2)

2
𝑥

2

3 |
0

1

=
45

2
𝑎𝑏 −

53

5
𝑎 −

27

5
𝑏 +

23

15
    

 
In the last theorem of this section we compute SDD polynomial 
of the silicon carbide graph 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1. 
Theorem:5.2 SDD polynomial of the silicon carbide graph 𝐺 ≅
𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] for 𝑎, 𝑏 ≥ 1, is given as: 

1. For 𝑏 = 1, 𝑎 ≥ 1 

 𝑆𝐷𝐷(𝐺, 𝑥) = 2𝑥−
3

5 + (6𝑏 − 6)𝑥−
7

13 + (15𝑎𝑏 −  10𝑎 − 2𝑏 + 4)𝑥−
1

2. 

2. For 𝑏 > 1, 𝑎 ≥ 1  

𝑆𝐷𝐷(𝐺, 𝑥) = 2𝑥−
3

5 + (12𝑎 + 8𝑏 − 14)𝑥−
7

13 + (15𝑎𝑏 −  16𝑎 −

                           10𝑏 + 12)𝑥−
1

2 . 

Proof: For given graph, by using  edge partition from Table 4, 
1. For 𝑏 = 1, 𝑎 ≥ 1 

𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸(𝐺)   

=∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸1,2
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸2,3
+

∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸3,3
= (2)𝑥

1×2

12+22−1
+(5𝑎 + 2)𝑥

2×2

22+22−1
+ (6𝑏 −

6)𝑥
2×3

22+32−1
+ (15𝑎𝑏 − 15𝑎 − 2𝑏 + 2)𝑥

3×3

32+32−1
 

 = 2𝑥−
3

5 + (6𝑏 − 6)𝑥−
7

13 + (15𝑎𝑏 −  10𝑎 − 2𝑏 + 4)𝑥−
1

2 

2. For 𝑏 > 1, 𝑎 ≥ 1  

𝑆𝐷𝐷(𝐺, 𝑥) = ∑ 𝑥

𝑑𝑖𝑑_𝑗

𝑑𝑖
2+𝑑𝑗

2−1

𝑖𝑗∈𝐸(𝐺)   

=∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸1,2
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸2,2
+ ∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸2,3
+

∑ 𝑥

𝑑𝑖𝑑𝑗

𝑑𝑖
2+𝑑𝑗

2 −1

𝑖𝑗∈𝐸3,3
= (2)𝑥

1×2

12+22−1
+(2𝑎 + 2)𝑥

2×2

22+22−1
+ (12𝑎 + 8𝑏 −

 14)𝑥
2×3

22+32−1
+ (15𝑎𝑏 − 18𝑎 − 10𝑏 + 10)𝑥

3×3

32+32−1
 

 = 2𝑥−
3

5 + (12𝑎 + 8𝑏 − 14)𝑥−
7

13 + (15𝑎𝑏 −  16𝑎 − 10𝑏 + 12)𝑥−
1

2  

As a particular result, we computed SDD index of 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] 
in the following corollary. 
Corollary: 5.2 SDD index of 𝐺 ≅ 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏] silicon carbide 
graph for 𝑎, 𝑏 ≥ 1, is given as:  

1. 𝑆𝐷𝐷(𝐺) = 30𝑎𝑏 − 7𝑎 − 4𝑏      for 𝑏 = 1, 𝑎 ≥ 1 

2. 𝑆𝐷𝐷(𝐺) = 30𝑎𝑏 − 6𝑎 −
8

3
𝑏 −

4

3
     for 𝑏 > 1, 𝑎 ≥ 1 

Proof:   

1. 𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
=∫ [2𝑥−

3

5 + (6𝑏 − 6)𝑥−
7

13 +
1

0

                (15𝑎𝑏 −  10𝑎 − 2𝑏 + 4)𝑥−
1

2]𝑑𝑥 

                                  = |5𝑥
2

5 +  
13(6𝑎−6)

6
𝑥

6

13 + 2(15𝑎𝑏 −  10𝑎 −  2𝑏 +

                                       4) √𝑥 |
0

1
 = 30𝑎𝑏 − 7𝑎 − 4𝑏 

2. 𝑆𝐷𝐷(𝐺) = ∫ 𝑆𝐷𝐷(𝐺, 𝑥)𝑑𝑥
1

0
 = ∫ [2𝑥−

3

5 + (12𝑎 + 8𝑏 −
1

0

                 14)𝑥−
7

13 + (15𝑎𝑏 −  16𝑎 − 10𝑏 +  12)𝑥−
1

2]𝑑𝑥 

                                   = |5𝑥
2

5 +  
13(12𝑎+8𝑏−14)

6
𝑥

6

13 + 2(15𝑎𝑏 −  16𝑎 −

                                     10𝑏 + 12) √𝑥 |
0

1
 = 30𝑎𝑏 − 6𝑎 −

8

3
𝑏 −

4

3
 

6 ANALYSIS 

In this section we draw surface of topological indices computed 
in Scetion 2, Section 3, Section 4 and Section 5, and give com-
parision of these indices.  
1. Using Corollary 2.1 and Corollary 2.2, we have the follow-

ing details: 
 ISI index of silicon carbide graph 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1 is  

𝐼𝑆𝐼(𝐺) = 18𝑎𝑏 − 3𝑎 −
39

5
𝑏 −

43

60
      for 𝑎 = 1, 𝑏 ≥ 1 

𝐼𝑆𝐼(𝐺) = 18𝑎𝑏 −
26

5
𝑎 −

79

10
𝑏 +

89

60
     for 𝑎 > 1, 𝑏 ≥ 1 
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Its value at 𝑎 = 𝑏 = 50 is  2660789/60  and green color sheet 
represents ISI index. 

 SDD index of silicon carbide graph 𝑆𝑖𝐶3 − 𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1 is  

        𝑆𝐷𝐷(𝐺) = 24𝑎𝑏 − 4𝑎 − 5𝑏 +
11

3
      for 𝑎 = 1, 𝑏 ≥ 1 

𝑆𝐷𝐷(𝐺) = 24𝑎𝑏 −
10

3
𝑎 −

14

3
𝑏 + 1     for 𝑎 > 1, 𝑏 ≥ 1 

Its value at 𝑎 = 𝑏 = 50 is  59601  and cyan color sheet rep-
resents SDD index. 

 

2. Using Corollary 3.1 and Corollary 3.2, we have the follow-
ing details: 

 ISI index of silicon carbide graph 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1 is  

𝐼𝑆𝐼(𝐺) = 18𝑎𝑏 −
26

5
𝑎 −

27

5
𝑏 + 1 

Its value at 𝑎 = 𝑏 = 50 is  44471  and yellow color sheet 
represents ISI index. 

 SDD index of silicon carbide graph 𝑆𝑖𝐶3 − 𝐼𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥
1 is  

        𝑆𝐷𝐷(𝐺) = 24𝑎𝑏 −
10

3
𝑎 −

8

3
𝑏 + 1      

Its value at 𝑎 = 𝑏 = 50 is  59701  and red color sheet repre-
sents SDD index. 

 

3. Using Corollary 4.1 and Corollary 4.2, we have the follow-
ing details: 

 ISI index of silicon carbide graph 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1 is  

𝐼𝑆𝐼(𝐺) =
45

2
𝑎𝑏 −

187

20
𝑎 −

26

5
𝑏 +

44

15
  

Its value at 𝑎 = 𝑏 = 50 is  149872/15  and blue color sheet 
represents ISI index. 

 SDD index of silicon carbide graph 𝑆𝑖𝐶4 − 𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1 is  

        𝑆𝐷𝐷(𝐺) = 30𝑎𝑏 −
11

3
𝑎 −

10

3
𝑏      

Its value at 𝑎 = 𝑏 = 50 is  74650  and purple color sheet 
represents SDD index. 

 

4. Using Corollary 5.1 and Corollary 5.2, we have the follow-
ing details: 

 ISI index of silicon carbide graph 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥ 1 is  

𝐼𝑆𝐼(𝐺) =
45

2
𝑎𝑏 −

103

10
𝑎 − 3𝑏 −

13

15
            for 𝑏 = 1, 𝑎 ≥ 1 

.  𝐼𝑆𝐼(𝐺) =
45

2
𝑎𝑏 −

53

5
𝑎 −

27

5
𝑏 +

23

15
     for 𝑏 > 1, 𝑎 ≥ 1 

Its value at 𝑎 = 𝑏 = 50 is  831773/15  and white color sheet 
represents ISI index. 

 SDD index of silicon carbide graph 𝑆𝑖𝐶4 − 𝐼𝐼[𝑎, 𝑏], 𝑎, 𝑏 ≥
1 is  

        𝑆𝐷𝐷(𝐺) = 30𝑎𝑏 − 7𝑎 − 4𝑏            for 𝑏 = 1, 𝑎 ≥ 1 

𝑆𝐷𝐷(𝐺) = 30𝑎𝑏 − 6𝑎 −
8

3
𝑏 −

4

3
     for 𝑏 > 1, 𝑎 ≥ 1 

Its value at 𝑎 = 𝑏 = 50 is  223696/3  and green color sheet 
represents SDD index. 
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